Mathématiques

Question

on considere les point A (-2;-3) B(2,-2)C(-1;1) et D (3,2) quelle est la nature du quadrilatere justifie

1 Réponse

  • bjr

    on commence par faire un dessin pour voir à quoi ressemble le quadrilatère

    A (-2;-3)    B(2,-2)   C(-1;1) et D (3,2)  

    1) on calcule les coordonnées des vecteurs AB et CD

    • vecteur AB (xB - xA ; yB - yA)

                         (  2 - (-2) ; -2 - (-3) )

                            (2 + 2 ; -2 + 3)

    vecteur AB (4 ; 1)

    • vecteur CD (xD - xC ; yD - yC)

                          (3 - (-1) ; 2 - 1 )

      vecteur CD (4 ; 1)

    les vecteurs AB et CD sont égaux, le quadrilatère ABDC est un parallélogramme  (on intervertit les lettres C et D)

    ABCD parallélogramme

    2)

    On calcule les longueurs AB et AC

    • calcul de AB

    AB² = (xB - xA)² + (yB - yA)²

          = 4² + 1² = 17

    AB = √17

    • calcul de AC

    AC² = (xC - xA)² + (yC - yA)²

                        xC - xA = -1 - (-2) = 1

                       yC - yA = 1 - (-3) = 4

    AC² = 1² + 4² = 17

    AC = √17

    AB = AC = √17

    ce parallélogramme a deux côtés consécutifs de même longueur,

    c'est un losange

Autres questions